Maya中如何选择循环边(Select edge loop)?

选择整条循环边:选择一条边,按住Shift键+鼠标左键双击与之并排的边。

选择部分循环边:选择起始的边,按住Shift键+鼠标左键双击末尾的边。

喵喵动画屋
喵喵动画屋https://miaodonghua.com
一枚默默无闻的2B动画师。

留下一个答复

- 广告 -

推荐文章

Maya打开文件时无法访问桌面和文档路径(Folder bookmark cannot access the desktop or document path)?

0
我们在使用Maya的过程中,win10系统下极少数的用户会遇到Maya在打开文件或者设置默认路径的时候,我们会发现桌面和文档是灰色根本没办法访问!只能访问本地磁盘。根本原因是:系统在安装的时直接使用了win10中内置的Administrator超级管理员账户,并且最难处理的是这个账户是没办法删除和修改的。 解决方法1:有那个能力的建议重新安装一个系统,安装的时候新建一个管理员账户,正所谓一劳永逸,杜绝了新的问题出现。解决方法2:那么除了重装系统,还有另外一个办法,就是直接新建一个账户。缺点就是:在这个新建的账户中,你可能需要重新安装一遍软件。也就是说你的电脑中会同时出现两个账户,有强迫症的会表示受不了。 首先,在我的电脑右键选择管理(G)。 然后依次打开本地用户和组>>用户>>右键选择“新用户”。 用户名自己看着写,取消勾选"用户下次登录时必须更改密码",勾选“密码永不过期”。然后点击创建>>关闭窗口。 这里就会出现我们上面创建的账户。 然后我们打开开始菜单>>点击这个用户图标>>选择我们上面创建的新用户名。 进入登录新用户后,系统会自动配置,遇到询问直接下一步。完成配置后,如果没有Maya,可以重新安装,这样当我们重新打开Maya后,原先变为灰色桌面和文档路径已经可以正常访问了。

Maya中如何利用点到点来捕捉对齐到对象(Point to Point)?

0
命令位置:Maya Modify(修改菜单)→捕捉对齐对象→三种利用点到点来对齐物体对象的命令。 我们首先来看下第一个:point to point(利用点到点来对齐物体对象) 这里,我先创建一个多边形立方体作为对齐的目标对象,然后,我再创建一个球体、一个圆柱和一个圆锥。我们就用这些个模型,来演示来演示这三种对齐命令。 首先我们打开【点到点对齐】后面的这个选项设置,我们可以看到,在这里面移动类型默认的选项是:单个物体对象。 例如,现在我进入组件选择模式,我选择圆柱按住shift加选立方体,那么这里默认就进入的是点模式。 现在我选择圆柱体上的一个点按住shift加选立方体上的一个点。 接着点击应用,我们可以看到这个点被对齐的同时,这个点所属的圆柱体,也会跟着移动过去,这个就是【点到点对齐】中的移动对象模式。 然后,我们来看下后面的这个parent父子关系。 我们先将物体恢复原状,例如,现在我选择这个圆柱加选圆锥,按下P键给他们建立父子关系。 同样的,我在组件模式下,我们选择圆柱体上的一个点加选立方体上的一个点。 然后点击应用,我们可以看到,这次移动的不仅是单个圆柱对象,父子关系下的圆锥对象也同样跟着移动。 同样的,当我们我们选择圆锥上的点加选立方体上的点,点击应用的时候。 我们可以看到,父子关系下的,子对象圆柱也是会跟着移动的,这个就是parent父子关系模式,它会在点到点对齐的时候,同时让父对象和子对象也跟着移动。 我们先将物体恢复原位,然后,我们再来看下后面的这个grandparent祖父关系。这个和前面的这个parent父子关系相比,只不过多了一层关系,原理都是一样的。 我们知道,我们的圆锥是父对象,圆柱是子对象。那么,当我们我选择父对象圆锥加选球体,按下P键给他们建立父子关系之后,在这里面,球体就变成了祖父对象。 现在,当我们选择子对象圆柱上的点加选立方体上的点,点击应用的时候,我们可以看到,祖父关系下的所有对象都会跟着移动,这个就是grandparent祖父关系模式。 至于下面的这个2点到2点对齐,3点到3点对齐,他们的选项设置和第一个点到点基本都是一样的。 除了第二个2点到2点对齐,我们打开它的选项。我们可以看到它多了一个捕捉类型的选择。 例如,我选择圆柱上的2个点去对齐立方体上的2个点,我们分别来看下这三种捕捉类型的效果。 首选选择默认的左侧,点击应用,点会对齐到左侧的位置。 然后我们选择中间,点击应用,点会对齐到中间的位置。 最后我们选择右侧,点击应用,点会对齐到右侧的位置。 这就是三种捕捉类型的对齐效果,非常简单。好了,关于这个点到点捕捉对齐到对象就讲到这里。

Maya中如何使用六种非线性变形器(Nonlinear)?

0
Maya变形菜单→非线性变形器菜单(Nonlinear)。那么因为这些变形器在创建之后,都可以很方便的进行调节,所以我们一般使用默认值来创建就可以了。 我们首先来看下第一种:弯曲变形(Bend)。 那么这里,我们在场景中准备了一个条形磁铁,现在我们就利用弯曲变形,将它变为U形磁铁。我们选择对象,执行弯曲变形。 这个时候,我们可以在右侧展开【弯曲变形节点】,这里,我们可以通过调节曲率来改变磁铁弯曲的程度。 另外,如果我们要改变这两个磁极的弯曲程度,我们可以调节它的弯曲下限。 还有这个弯曲上限。 当然,如果我们要改变这个弯曲中心点位置,我们可以直接移动变形器的位置。 这么刚才,虽然我们可以直接对参数调节,但是对于这个弯曲变形并不是非常的方便,我们撤销回去。这里,我们可以【T键】调出变形器的操纵手柄。 然后,我们只要拖动这些操纵点,就可以很容易的达到我们预定的变形要求,这个就是弯曲变形的使用方法。 然后我们来看下第二个:扩张变形(Flare)。 同样的,我们选择对象,执行扩张变形。 这里它上下的两个圈就是开始扩张和结束扩张的位置。 如果我们要改变开始位置的变形,我们在可以在【扩展变形节点】中,同时选中【开始扩张X和开始扩张Z】,然后调整它的数值。 同样的,这个结束位置变形,我们可以同时选中【结束扩张X和结束扩张Z】,然后调整它的数值。 至于这个中间部分,它是由这个扩展曲线的曲率来决定的。这里,这个直接调节参数,并不是非常的好把控。 这里我们可以T键,手动来进行调整。 我们修改它,就可以起到一个内外凹凸的一个效果。 最后这个扩张上限和扩张下限,我们直接移动上下两端的控制点来进行调节就OK了,这个就是扩张变形的使用方法。 然后我们来看下第三个:正弦变形(Sine)。 那么这里我们准备了一个触角一样的模型,同样的,我们选择它,执行正弦变形。 我们先在右侧展开它的【正弦变形节点】,然后我们T键进入操纵点模式。我们只要拖动中间的这个操纵点,就可以改变振幅的大小。 如果我们要让这个触角摆动起来,我们可以移动中间的这个操纵点让它产生偏移。 当然这个是手动效果,我们实际操作的时候,可以对它的这个偏移值进行K帧,必要的时候还可以对这个振幅进行K帧都是可以的。我们Q键退出操纵模式,那么至于更加细节的效果。我们还可以调节的它的波长,还有这个衰减值,非常简单,这个就是正弦变形的使用方法。 然后我们来看下第四个:挤压变形(Squash)。 那么这里我们准备一根管道,同样的,我们选择它,执行挤压变形。 然后我们T键进入操纵点模式,那么它上端和下端的这两个十字架,就是上限和下限。也就是我们挤压,受影响的范围。 那么中间的这个操纵点代表的是变形的主要位置。 而外侧的这个操纵点才是用来控制挤压变形的程度,这个非常简单,没什么需要注意的。 然后我们来看下第五个:扭曲变形(Twist)。 那么这里我们准备了一个棱柱模型,同样的,我们选择它,执行扭曲变形。 那么这里用操纵手柄调节不是很不方便,我们直接展开它的【扭曲变形节点】。这里它有一个开始角度和结束角度。 这些,我们只要调节就可以看到扭曲的效果,这个非常简单,这里就不多说了。 最后我们来看下第六个:波浪变形(Wave)。 那么这里我们准备了一个墨绿色的平面,我们就用它来制作波浪效果。同样的,我们选择它,执行波浪变形。 然后我们在右侧展开它的【波浪变形节点】,我们首先来调节一下它的振幅,那么我们可以看到这个振幅是一个敏感参数。 所以这里,我们可以手动设置一个0.05,然后我们适当的设置一下这个波长。 那么这个时候,如果我们想要这个波浪产生动画效果,我们可以让这个偏移值产生一些变化。 例如我们在第1帧的时候,让它的偏移值=0,设置关键帧。 然后,我们在第120帧的时候,让它的偏移值=2,设置关键帧。 这样我们播放动画的时候,这个效果出来了。至于这个衰减值,最小半径和最大半径,我们根据实际需要去调整就可以了。 那么关于这6个非线性变形器的操作,我们还需要特别注意一点:也就是当我们T键进入操纵手柄模式的时候,我们虽然可以直接在右侧输入参数来改变数值。 但是我们没办法选择属性,鼠标中键在场景中拖动来改变数值。 这个时候,一定要Q键退出当前的操纵手柄模式。这样,我们才能够选择属性,利用鼠标中键来修改参数,这个呢,就是我们需要注意的地方。 非线性变形器包含:弯曲变形(Bend),扩张变形(Flare),正弦变形(Sine),挤压变形(Squash),扭曲变形(Twist),波浪变形(Wave)。快速调节变形器:T键进入,Q键退出。

Maya中如何使用镜像命令(Mirror)?

0
今天我们来看下MAYA多边形建模中,Mesh网格菜单下的这个【Mirror镜像命令】。它的意思,就是在镜像平面的另一侧,复制出一个新的,一模一样的物体对象。 我们首先打开【镜像命令】的选项设置。那么在里面,就有一个比较重要的【切割几何体】功能,它默认是保持勾选的。 例如:我们在场景中创建一个多边形球体,我们点击应用。 我们拖动这个坐标轴,我们就可以看到:在另一侧,复制出了一个一模一样的球体。那么我们这里选择的镜像方式是:世界坐标X轴的负方向,所以它是朝着这个方向去镜像复制的。 假如我们要朝着X轴的正方向去镜像,只要在这里将【镜像的方向】设置为正。然后我们撤销回去,我们重新选择球体,点击应用。现在,我们就可以看到:球体就能朝着【世界坐标X轴的正方向】去复制了。 我们按下4键开启线框显示,我们可以清楚的看到:他们相交的部分,是会被切割掉的。 这个就是【切割几何体】的一个特性,我们按下5键回到实体显示,我们重新选择球体,我们会发现这两个球体变为了一个整体,这是因为在【合并设置】中勾选了【与原始模型合并】的这样一个选项。 假如我们在镜像之后,想让镜像的模型和原始模型独立开来。我们只要记得,在执行【镜像命令】之前,取消勾选它就OK了。 说完了【切割几何体】,我们继续来看一下,除【切割几何体】以外的镜像类型那么我们取消勾选它之后,下面的这个【几何体类型】就能被激活使用了。首先我们来看下这个Copy镜像模式。 这里我们选择【世界坐标中心】为对称轴,【偏移值】我们就保持默认的就可以,【镜像轴】我们使用默认的【X轴】,我们重新在场景中创建一个多边形球体。为了看到效果,我们将它移动到一边,然后点击应用。 我们可以看到:这个原始的球体,就被镜像复制到了X轴相反的一侧。 然后,我们再来看一下关于【边界盒】对称。例如,我们在场景中重新创建一个球体,我们进入前视图,我们把这个球体右半部删除,然后我们再回到透视图中。 如果我们不知道什么是【边界盒】,我们可以在着色菜单下选择【边界盒】显示。 我们就可以看到:这个半边球体的所对应的一个边界盒。 至于我们是以【左边界】为对称轴,还是以【右边界】为对称轴。那么决定的因素就是【镜像的一个方向上的设置】。那么选择【正值】,自然就是以这个【右边界】为对称轴;选择【负值】,自然就是以这个【左边界】为对称轴。 那么这里我们需要注意:我们设置正值负值的时候,一定要注意观察这个【世界坐标】的方向,而不是想当然的去设置。 好了,我们按下5键回到实体显示,那么假设现在,我们就以X轴【正方向】对应的【右边界】为对称轴,也就是这个【切口的部分】为对称轴。 我们点击应用,我们可以看到球体的另外一半就被镜像出来了。 至于X轴【负方向】,也就是这个【左边界】,不用说,镜像出来一定是:两个半球背靠背的一个情形。我们撤销回去,我们再次点击应用,我们可以看到这个效果就出来了,说明我们的判断是没有任何问题的。 然后我们再来看下这个关于【物体坐标】对称,其实它和【世界坐标中心】对称是一样的原理,我们撤销回去。现在我们按住D键,修改一下我们的这个【半球体的坐标位置】。那么现在,这个【坐标中心】就是对称轴。 然后我们点击应用,我们就能看到:这个【物体坐标】的另一侧,就镜像出了一个新的半球体,非常简单。 然后我们再来看下这个Instance实例镜像,它和这个Copy复制模式,其实操作上是完全一样的,这里就不再重复讲解了。 我们只说这个实例镜像,它有什么独特性质。我们撤销回去,例如,我们就在这个实例模式下,镜像一个半球体。 这里,我们可能看不出区别,但是我们进入点模式之后,我们移动单个点,我们会发现,原始模型上对应的点,也会跟着移动。这个就是实例镜像的所具有的关联特性。 另外,我们都知道,我们的身体左边和右边是近似于对称的。那么平时我们对人体进行建模的时候,除了可以使用【开启对称】来进行调节,我们也可以使用这个【实例镜像】,它能够达到和【对称调节】一样的效果。 最后,我们来看下这个Flip翻转镜像,这个也很简单,操作的方法和上面的类似。唯一不同的是:上面的两个镜像类型, 都会镜像出一个新的对象。而这个翻转,则是直接把原始对象翻转过去。 例如,我们在场景中创建一个圆锥,我们把它移动到网格上方。这里我们选择世界坐标中心对称,对称轴选择Y轴,点击应用。 我们可以看到,圆锥直接翻转到了下方,这个就是镜像类型中的【翻转】。 至于下面的合并类型,UV设置这个很简单。 我们唯一, 需要注意的,就是这个合并设置下的【边界】,它默认的是:【合并边界上的顶点】。 那么我们可以根据自己需要,选择【桥接边界上的边】或者是【不合并边界】都是可以的。 好了,关于Maya的镜像命令就讲到这里。

Maya中如何无限撤销(Undo infinite)?

0
那么在Maya中默认撤销的步数为50步,而我们平时在工作的过程中,这个撤销步数是远远不够的。所以这里建议大家直接设置为“Indfinite”无限制撤销。 设置方法:窗口菜单(windows)>>设置首选项(settings preferences)>>首选项(preference)>>撤销(undo)>>勾选(Indfinite),具体操作如下图。